Quantitative Model Refinement as a Solution to the Combinatorial Size Explosion of Biomodels
نویسندگان
چکیده
Building a large system through a systematic, step-by-step refinement of an initial abstract specification is a well established technique in software engineering, not yet much explored in systems biology. In the case of systems biology, one starts from an abstract, high-level model of a biological system and aims to add more and more details about its reactants and/or reactions, through a number of consecutive refinement steps. The refinement should be done in a quantitatively correct way, so that (some of) the numerical properties of the model (such as the experimental fit and validation) are preserved. In this study, we focus on the data-refinement mechanism where the aim is to increase the level of details of some of the reactants of a given model. That is, we analyse the case when a model is refined by substituting a given species by several types of subspecies. We show in this paper how the refined model can be systematically obtained from the original one. As a case study for this methodology we choose a recently introduced model for the eukaryotic heat shock response, [19]. We refine this model by including details about the acetylation of the heat shock factors and its influence on the heat shock response. The refined model has a significantly higher number of kinetic parameters and variables. However, we show that our methodology allows us to preserve the experimental fit/validation of the model with minimal computational effort.
منابع مشابه
Numerical Study of Spherical Vapor Layer Growth Due to Contact of a Hot Object and Water
Vapor film formation and growth due to contact of a hot body and other liquids arise in some industrial applications including nuclear fuel rods, foundry and production of paper. The possibility of a steam explosion remains in most of these cases which could result in injuries and financial damage. Due to the importance of such phenomenon, this study deals with vapor layer forming, growth, and ...
متن کاملQuantitative evaluation of the domino effects of the explosion caused by the CNG fuel station using consequence modeling and GIS
Introduction: compressed natural gas stations are one of the most critical and dangerous urban land uses and should be highly regarded. The domino effects of accidents are essential concepts in urban areas. The present study aims to analyze explosive domino accidents at compressed natural gas stations (CNG). Modeling the consequence in fuel stations can minimize the likelihood of a crisis and l...
متن کاملComposition and Refinement of Discrete Real-Time Systems
Reactive systems exhibit ongoing, possibly non-terminating, interaction with the environment. Real-time systems are reactive systems that must satisfy quantitative timing constraints. This paper presents a structured compositional design method for discrete real-time systems that can be used to combat the combinatorial explosion of states in the verification of large systems. A composition rule...
متن کاملA novel mathematical model of formulation design of emulsion explosive
A novel mathematical model has been developed to aid the formulation of emulsion explosives. This mathematical model calculated heat of explosion, oxygen balance and raw material cost as a function of explosive ingredients, and the solution of the mathematical model was obtained by a MS Excel program. The effects of the different content of NH4NO3, NaNO3, H2O, and span-80 and composite fuel oil...
متن کاملQuantitative Refinement and Model Checking for the Analysis of Probabilistic Systems
For standard (ie non-probabilistic) systems of reasonable size, correctness is analysed by simulation and/or model checking, possibly with standard program-logical arguments beforehand to reduce the problem size by abstraction. For probabilistic systems there are model checkers and simulators too; but probabilistic program logics are rarer. Thus e.g. model checkers face more severe exposure to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 284 شماره
صفحات -
تاریخ انتشار 2012